Partielle Differentialgleichungen - Übungsblatt 5

Wintersemester 2019/2020

Dr. Thomas Stiehl, Chris Kowall

Abgabe: 26. November, 11:00 Uhr in den Zettelkasten (1. Stock Mathematikon)

Aufgabe 5.1 Perron-Verfahren auf unbeschränkten Mengen

5 Punkte

Für $n \in \mathbb{N}, n \geq 3$ sei $\Omega \subset \mathbb{R}^n$ offen und nicht beschränkt. Jedoch sei der Rand $\partial \Omega$ beschränkt, nicht leer und jeder Randpunkt regulär. Weiter seien $\varphi : \partial \Omega \to \mathbb{R}$ eine gegebene stetige Funktion und $\gamma \in \mathbb{R}$ ein Parameter.

Beweisen Sie, dass es genau eine harmonische Funktion $u \in C^2(\Omega) \cap C(\overline{\Omega})$ gibt mit

$$\begin{cases} \Delta u = 0 & \text{in } \Omega, \\ u = \varphi & \text{auf } \partial\Omega, \\ \lim_{|x| \to \infty} u(x) = \gamma, \end{cases}$$

indem Sie folgende Schritte zeigen:

(a) Prüfen Sie, ob das Perron-Verfahren auf die folgende Menge

$$S_{\varphi,\gamma} := \left\{ v \in C(\overline{\Omega}) \,\middle|\, v \text{ ist subharmonisch in } \Omega, v_{|\partial\Omega} \leq \varphi \text{ und } \lim_{|x| \to \infty} v(x) = \gamma \right\}$$

anwendbar ist und finden Sie ein harmonisches $u \in C^2(\Omega) \cap C(\overline{\Omega})$ zu Randdaten φ .

(b) Folgern Sie, dass die Lösung aus Aufgabenteil (a) auch einen Grenzwert im Unendlichen besitzt.

Hinweis. Betrachten Sie zu festem $x_0 \in \mathbb{R}^n, c > 0$ die superharmonische Hilfsfunktion

$$w(x) := \min \left\{ \max \left\{ \sup_{\partial \Omega} \varphi, \gamma \right\}, \gamma + c \cdot \Phi(x, x_0) \right\}$$

mit der Fundamentallösung Φ aus Definition 2.5. Wählen Sie x_0 und c so, dass $v-w\leq 0$ auf $\partial\Omega$ für jedes $v\in S_{\varphi,\gamma}$ gilt.

(c) Zeigen Sie, dass die Lösung auch eindeutig bestimmt ist.

Aufgabe 5.2 Maximumprinzipien

5 Punkte

Für $m, n \in \mathbb{N}, n \geq 2$ seien $\Omega \subset \mathbb{R}^n$ offen, beschränkt und zusammenhängend und p_1, \ldots, p_m endlich viele Randpunkte von Ω . Beweisen Sie die folgenden Aussagen:

(a) Ist $u \in C(\Omega)$ subharmonisch und beschränkt mit

$$\lim_{x \to x_0} u(x) \le 0 \qquad \forall \ x_0 \in \partial\Omega \setminus \{p_1, \dots, p_m\},\$$

so gilt $u \leq 0$ in Ω .

Hinweis. Betrachten Sie die Hilfsfunktionen $(u_{\varepsilon})_{{\varepsilon}>0}$ gegeben durch

$$u_{\varepsilon} := u - \varepsilon \sum_{i=1}^{m} \Phi(\cdot, p_i)$$

mit der Fundamentallösung Φ aus Definition 2.5 auf $V:=\Omega\setminus\bigcup_{i=1}^m\overline{\mathbb{B}_{r_i}(p_i)}$ für geeignete Radien $r_i>0$.

Bitte wenden!

(b) Ist $u \in C^2(\Omega)$ harmonisch und beschränkt mit

$$\lim_{x \to x_0} u(x) = 0 \qquad \forall \ x_0 \in \partial\Omega \setminus \{p_1, \dots, p_m\},\$$

so gilt $u \equiv 0$ in Ω .

Aufgabe 5.3 Lebesgue Spine

5 Punkte

Betrachten Sie für $c \in (0,1]$ die Mengen $S_c := \{(x,y,z) \in \mathbb{R}^3 \mid \rho < e^{-c/z}, z > 0\}$, wobei wir $\rho^2 = x^2 + y^2$ analog zu Zylinderkoordinaten schreiben. Sei $\Omega = \mathbb{B}_1(0) \setminus \overline{S_1} \subset \mathbb{R}^3$ und

$$w: \overline{\Omega} \setminus \{0\} \longrightarrow \mathbb{R}, \quad (x, y, z) \longmapsto \int_0^1 \frac{t}{\sqrt{\rho^2 + (z - t)^2}} \, \mathrm{d}\mathcal{L}^1 t.$$

- (a) Zeigen Sie, dass $w \in C^2(\Omega)$ harmonisch ist.
- (b) Beweisen Sie, dass w beschränkt ist und mit geeigneten Stammfunktionen

$$\lim_{\xi \in \partial S_c, \xi \to 0} w(\xi) = 1 + 2c$$

folgt, d.h. $w \notin C(\overline{\Omega})$.

(c) Machen Sie sich klar, dass alle Randpunkte aus $\partial \Omega \setminus \{0\}$ regulär sind, und widerlegen Sie, dass 0 regulär ist.

 $\mathit{Hinweis}.$ Zeigen Sie, dass die Perron-Lösung u auf Ω zu den stetigen Randdaten

$$\varphi:\partial\Omega\longrightarrow\mathbb{R},\quad \xi\longmapsto egin{cases} w(\xi) & \quad \text{für} \quad \xi\neq0, \\ 3 & \quad \text{für} \quad \xi=0 \end{cases}$$

bereits mit w übereinstimmt, falls 0 ebenfalls regulär wäre.