Gewöhnliche Differentialgleichungen - WS 19/20

Dr. MV Barbarossa

February 5, 2020

Kontakt: MV Barbarossa (Dozent): barbarossa@uni-heidelberg.de; Christian Düll (Obertutor): duell@math.uni-heidelberg.de.

Organisatorisches

- Vorlesung: Dienstag 11:15-12:45Uhr im SR B und Freitag 11:15-12:45Uhr im HS
- Tutorien: Die 9-11Uhr SR2, Mi 9-11Uhr HS
- Um die Bewertung der Hausaufgaben, der Klausur und sonstige Mitteilungen vom Dozent/Übungsleiter zu erhalten, tragen Sie sich in Müsli ein
- Klausurzulassung: 50% der Punkte und regelmäßige Teilnahme an den Übungen
- Klausur: schriftlich. Termin: 12.2.2020 vormittags (Nachklausur in der ersten Aprilhälfte für Studierende die nicht bestanden haben)
- Die Vorlesung findet in Form von Tafelunterricht statt. Es gibt kein Skript, schreiben Sie bitte mit :)

Literatur

- V. Arnold, Gewöhnliche Differentialgleichungen, Springer (2. Auflage, 2001)
- O. Forster, Analysis 2, Springer (11. Auflage, 2017)
- J. Guckenheimer and Ph. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Springer (1983)
- J. Hale, Ordinary Differential Equations, Dover (reprint 2009)
- J. Hale and H. Kocak, Dynamics and Bifurcations, Springer (1991)
- Ph. Hartman, Ordinary Differential Equations, SIAM (2. Auflage, 2002)

- M. Hirsch, S. Smale and R. Devaney, Differential Equations, Dynamical Systems and Introduction to Chaos, Academic Press (2004)
- Y. Kuznetsov, Elements of Applied Bifurcation Theory, Springer (1998)
- L. Perko, Differential Equations and Dynamical Systems, Springer (3. Auflage, 2001)
- J. Scheurle, Gewöhnliche Differentialgleichungen, Birkhäuser (2017)
- W. Walter, Gewöhnliche Differentialgleichungen, Springer (7. Auflage, 2000)

Inhalt

Die 15.10 Vorlesung

- Einführung, Organisatorisches, Überblick über die Struktur der Vorlesung über das Semesters
- Definitionen: gewöhnliche DGL, abhängige/unabhängige Variable, Ordnung der DGL, Lösung der DGL, implizite/explizite Form; autonome/nicht autonome Gleichungen; lineare homogene/inhomogene Gleichungen; Systeme von DGLen;
- Wie schreiben wir ein nichts autonomes Problem als autonomes Problem
- Eine DGL m-ter Ordnung lässt sich als System m DGL 1. Ordnung schreiben
- Formulierung des Anfangswertproblem (AWP);
- Beispiel aus der Physik (Newton)

Fr 18.10 Vorlesung

- Beispiele aus der Chemie (Reaktionen), Populationsdynamik (Räuber-Beute)
- Geometrische Bedeutung, Richtungsfeld;
- Lösungsmethoden (1): Trennung der Variablen
 - Satz und Beweis über Existenz und Eindeutigkeit der Lösung der DGL y'=f(t)g(y)
 - Beispiele: $y'(t) = -\frac{y}{t}$ und logistische Gleichung

Übung W1 keine Übungsstunde diese Woche; Blatt 0 (ohne Abgabe) am Di 15.10 online; Blatt 1 Abgabe am Donn 24.10 online - Besprechung am 29/30. Okt

Die 22.10 Vorlesung

- Trennung der Variablen:
 - Spezialfall: y' = f(t) (parallel Verschiebung der Lösungen)
 - Spezialfall: y' = g(y) (Verschiebung in der t-Richtung).
 - Was passiert wenn $g(y_0) = 0$? Ein Beispiel für nicht-Eindeutigkeit der Lösung $(y' = y^{2/3}$ in einer Umgebung der Null)
- Lösungsmethoden (2): Skalare lineare Gleichungen 1. Ordnung y' = a(t)y + b(t);
 - Satz über Existenz und Eindeutigkeit der Lösung der homogenen Gleichung y' = a(t)y;
 - Konstruktion der Lösung durch Variation der Konstanten für nicht homogenen Fall;
 - Beispiel $y' = 2ty + t^3$;
 - Bemerkung zur Superposition von Lösungen (Lineare Operatoren)
- Lösungsmethoden (3): Homogene Differentialgleichungen $y' = f\left(\frac{y(t)}{t}\right), t \neq 0$ (Substituiere z = y/t und reduziere auf DGL mit getrennten Variablen).

Fr 25.10 Vorlesung

- Lösungsmethoden (4): Exakte Differentialgleichungen
 - Konzepte von Differentialformen und Stammfunktion
 - Satz über Existenz der Lösung gegeben einer Stammfunktion
 - $-\,$ Satz über Existenz einer Stammfunktion in einem konvexen Gebiet
 - Beispiele: (i) $y' = \frac{t + cos(y)}{t sin(y)}$, $y(1) = \pi/2$; (ii) $y'(2ty + y^3) + 3t + y^2 = 0$, y(0) = -1.
- Lösungsmethoden (5): Gleichungen mit integrierendem Faktor; Beispiel: $(2y^3 + 2y)dt + (3ty^2 + t)dy = 0$.

Übung W2 22/23.10. Blatt 0 besprechen; Blatt 1 wird bis 24.10. abgegeben; Blatt 2 online - Abgabe bis Do 31.10

_WOCHE 3 _____

Die 29.10 Vorlesung

- Hilfsmittel zur Grundlegenden Beweise:
 - Norm, normierter Raum, induzierte Metrik, äquivalente Normen, Beispiele von Normen in \mathbb{R}^n
 - Konvergenz und Vollständigkeit, Banach Raum (Def und Beispiele)

- Lipschitz-Stetigkeit und Kontraktionen
- Fixpunktsatz für Kontraktionen

Fr 1.11 FEIERTAG Keine Vorlesung

Übung W3 29/30.10. Blatt 1 besprechen; Blatt 2 wird bis 31.10. abgegeben; Blatt 3 online - Abgabe bis Do 7.11

 $_{
m L}$ WOCHE 4 $_{
m L}$

Die 5.11 Vorlesung

- Grundlegende Eigenschaften (Existenz, Eindeutigkeit, Abhängigkeit von den Anfangsdaten) der Lösungen des AWPs $y' = f(t, y), y(t_0) = y_0$
 - Existenzsatz von Peano (ohne Beweis, ggf. später im Semester): f stetig $\to \exists$ mind. eine Lösung
 - Regularität: $f \in C^m(D, \mathbb{R}^n) \to y: I \to \mathbb{R}^n \in C^{m+1}(I, \mathbb{R}^n)$
 - Satz von Picard-Lindelöf (global): f stetig und global Lipschitz stetig bzgl. y $\to \exists$ eindeutige Lösung
 - Bemerkung: Konstruktiver Beweis von Picard-Lindelöf, Sukzessive Approximationen
 - Satz von Picard-Lindelöf (lokal): f lokal Lipschitz-stetig bzgl $y \to \exists$ eindeutige Lösung in einer Umgebung von (t_0, y_0)
 - Idee eines maximalen Existenzintervall anhand des Beispiels: y(t)' = 2ty(t), y(0) = c, $c \in \mathbb{R}$.

Fr 8.11 Vorlesung

- Grundlegende Eigenschaften (Existenz, Eindeutigkeit, Abhängigkeit von den Anfangsdaten) der Lösungen des AWPs $y' = f(t, y), y(t_0) = y_0$
 - Def. maxim. Existenzintervalls (($-\infty,b$), (a,b), (a,∞) or $(-\infty,\infty)$) und Beispiele
 - Satz über Maximale Lösungen und das Verlassen jedes Kompaktum
 - Satz über Blow-ups
- Differentialungleichungen

Übung W4 6/7.11. Blatt 2 besprechen; Blatt 3 wird bis 7.11. abgegeben; Blatt 4 online-Abgabe bis Do 14.11

Die 12.11 Vorlesung

- Lemma von Gronwall (Integralform)
- Abhängigkeit von den Daten Stetige Abhängigkeit vom Anfangswert als Folgerung vom Lemma von Gronwall
- Stetige Abhängigkeit und Konzept von Stabilität (stabile Lösung im Sinne von Lyapunov, gleichmäßige Stabilität, asymptotische Stabilität)

Fr 15.11 Vorlesung

- Qualitative Analyse für skalare DGlen
 - Vergleichsprinzip für gewöhnliche DGLen, Konzept von Ober-/Unterlösungen
 - Kriterien für Existenz einer globalen Lösung der DGL y' = f(t, y) (gleichmäßige globale Lipschitz-Stetigkeit, sublineares Wachstum, beschränktes Differenzenquotient jeweils in y)
 - Konzept von Asymptoten und Gleichgewichtspunkten, Bestimmung von Gleichgewichte eines autonomen Problems
 - Beispiel: qualitative Analyse der logistischen Gleichung

Übung W5 12/13.11. Blatt 3 besprechen; Blatt 4 wird bis 14.11. abgegeben; Blatt 5 online - Abgabe bis Do 21.11

_____WOCHE 6 ____

Die 19.11 Vorlesung

- \bullet Qualitative Analyse des AWPs $y'(t)=y^2-(\arctan(t))^2,\,y(1)=0$
- \bullet Qualitative Analyse des AWPs $y'(t)=y\ln(y+1),y(0)=y_0\in(-1,\infty)$

Fr 22.11 Vorlesung

- Lineare Systeme y'(t) = A(t)y(t) + b(t)
 - Existenz und Eindeutigkeit glob. Lösung des AWPs (mit $y(t_0) = y_0$)
- Lineare homogene Systeme $b(t) \equiv 0$
 - Lösungsraum $\mathcal{S} \subset C^1(I,\mathbb{R}^n)$ ist ein n-dim linearer Unterraum
 - Bestimmung einer Basis von $\mathcal S$
 - $-\,$ Def. Lösungsmatrix, Fundamentalmatrix, Wronski-Determinante
 - Satz von Liouville für die Wronski-Determinante
 - Übergangsmatrix und Zusammenhang mit Fundamentalmatrix

Übung W6 19/20.11. Blatt 4 besprechen; Blatt 5 wird bis 21.11. abgegeben; Blatt 6 online - Abgabe bis Do 28.11

Die 26.11 Vorlesung

- Lineare inhomogene Systeme $b(t) \neq 0$, Variation der Konstanten
- ullet DGLen n-ter Ordnung (homogener Fall), Wronski-Determinante von n Lösungen
- Reduktionsverfahren von D'Alembert mit Beispiele

Fr 29.11 Vorlesung

- Die Matrixeponentialfuntion und ihre Eigenschaften
- Lineare Systeme mit konstanten Koeffizienten, y' = Ay + b(t)
 - Konstruktion der Lösung bzw der Fundamentalmatrix
 - $-\ldots$ im Fall A diagonalisierbar, mit Beispiele

Übung W7 26/27.11. Blatt 5 besprechen; Blatt 6 wird bis 28.11. abgegeben; Blatt 7 online - Abgabe bis Do 5.12

_WOCHE 8 _____

Die 3.12 Vorlesung

- Lineare Systeme mit konstanten Koeffizienten
 - Lineare Systeme mit konstanten Koeffizienten
 - $-\ldots$ im FallAnicht diagonalisierbar (verallg. Eigenräume und Jordan-Normalform), mit Beispiele
 - Bemerkung: Reelle Lösungen aus komplexen Eigenwerte
- Qualitatives Verhalten der Lsgn. einer komplexen lineare DGL $y'=\lambda y$ in $\mathbb C$

Fr 6.12 Vorlesung

- Grundbegriffe der Dynamik Fluß, Phasenraum, Orbits, Gleichgewichte, T-Periodische Orbit
- Stabilität linearer Systeme Teil 1

Übung W8 3/4.12. Blatt 6 besprechen; Blatt 7 wird bis 5.12. abgegeben; Blatt 8 online - Abgabe bis Do 12.12

Die 10.12 Vorlesung

- Stabilität linearer Systeme Eigenwertkriterium
- Planare Systeme Klassifizierung

Fr 13.12 Vorlesung

- Eine geometrische Beobachtung zur Det und Spur einer Matrix und ihre Bedeutung für Flüsse linearer Systeme (Liouvillsche Formel)
- Def. Stabiler (E^s) , Zentrum- (E^c) und instabiler (E^u) Unterraum eines linearen autonomen Systems y' = Ay; Beispiele
- Linearisierung eines nichtlinearen Systems y' = f(y) um einen Gleichgewicht y^* $(f(y^*) = 0)$
- Topologische Äquivalenz (Konjugation) von Flüsse

Übung W9 10/11.12. Blatt 7 besprechen; Blatt 8 wird bis 12.12. abgegeben; Blatt 9 online - Abgabe bis Do 19.12

_____WOCHE 10 _____

Die 17.12 Vorlesung

- Topologische Konjugation von Flüsse Beispiel mit Konstruktion eines Homöomorphismus
- Satz von Hartman und Grobman (mit Beweis-Skizze) und Beispiele

Fr 20.12 Keine Vorlesung

Übung W10 17/18.12. Blatt 8 besprechen; Blatt 9 wird bis 19.12. abgegeben; Blatt 10 online - Abgabe bis Do 9.1

_____WOCHE 11 _____

Die 7.1 Vorlesung

- Prinzip der linearisierten Stabilität (Folgt aus Hartman-Grobman)
- Lyapunov Funktionen Definition und Bedeutung
- Lyapunovs direkte Methode für Stabilität/Instabilität von Fixpunkte

Fr 10.1 Vorlesung

- Lyapunov direkte Methode Beispiele
- Anwendung von Lyapunov Funktionen für Globale Stabilität
- Basin of Attraction (Einzugsgebiet) eines asympt. stab. Gleichgewichtes

Übung W11 7/8.1. Blatt 9 besprechen; Blatt 10 wird bis 9.1 abgegeben; Blatt 11 onlin - Abgabe bis Do 16.1
WOCHE 12
Die 14.1 Vorlesung
• α - und ω -Limesmenge
• Invarianzprinzip von LaSalle
• Nullkline Methode für globale Analyse des Phasenraums
Fr 17.1 Vorlesung
• Stabile und Instabile Mannigfaltigkeiten eines hyperbolischen Gleichgewichte
• Satz über die Stabile Mannigfaltigkeit
• Zentrumsmannigfaltigkeiten (Intro)
$\mathbf{\ddot{U}bung~W12}$ 14/15.1. Blatt 10 besprechen; Blatt 11 wird bis 16.1 abgegeben; Blatt 1 online - Abgabe bis Do 23.1
WOCHE 13
Die 21.1 Vorlesung
• Zentrumsmannigfaltigkeiten - Approximation im Fall $(E^u = \emptyset)$
• Bifurkationen in Dim 1 - Teil 1(Saddle-node)
Fr 24.1 Vorlesung
• Bifurkationen in Dim 1: Saddle-node, Pitchfork, Trancritical
• Sätze über Saddle-node/Pitchfork Bifurkation, Beispiele
$\ddot{\mathbf{U}}$ bung W13 21/22.1. Blatt 11 besprechen; Blatt 12 wird bis 23.1 abgegeben
WOCHE 14
Die 28.1 Vorlesung
Hopf Bifurkation und Beispiele
 Planare Dynamik - Periodische Orbits ausschließen: Bendixson - Dulac Kriteri und Beispiele

Fr 31.1 Vorlesung

• Planare Dynamik - Poincaré-Bendixson, Beispiele

 $\mathbf{\ddot{U}bung} \ \mathbf{W13} \ 28/29.1.$ Blatt 12 besprechen

_WOCHE 15 _	

Die 4.2 Vorlesung

• Analyse des SIR Modell mit Populationsdynamik: Nullklinen, Fixpunkte, Lineare Stabilität, Existenz von periodischen Orbits, Invariante Gebiete im Phasenraum, Globale Stabilität

Fr 8.2 Vorlesung

• Numerische Methoden für gew. DGLen